From 1 - 2 / 2
  • Metadata record for data from ASAC Project 2500 See the link below for public details on this project. Public Weekly fast-ice and snow thicknesses from an ongoing long-term time-series together with meteorological data will be used to analyse ice-atmosphere interactions. Interannual changes will be related to climate effects. Various sites at each location will be sampled to resolve the influence of oceanic forcing on the fast-ice growth. Project objectives: Landfast sea ice (fast ice) forms on the near-coastal ocean off each of the three Australian Antarctic stations each autumn. At Mawson and Davis stations this ice cover is generally stable, increasing in thickness throughout the winter to reach its maximum thickness in October or November before decaying and eventually breaking out in late spring or summer [Heil and Allison, 2002a]. At Casey, the third Australian station, the fast-ice cover is very unstable and not suitable for the study proposed here. The fast ice at the proposed measuring sites is stationary all through the austral winter. There is no contribution due to mechanical processes (rafting or ridging) on the thickness evolution of the fast ice at the measuring sites [Heil, 2001]. Its growth and decay, and the annual maximum thickness depend primarily on thermodynamic processes [Heil et al., 1996], which are forced by energy and moisture exchanges at the atmosphere-ice interface, the thickness of the snow cover, and the thermal energy supplied to the underside of the ice from the ocean. Starting in the mid 1950s measurements of the fast-ice thickness and snow cover are available for individual years at Mawson and Davis stations. After quality control the combined record for Mawson includes data from 27 seasons; the Davis record includes 20 seasons [Heil and Allison, 2002a]. However, significant gaps exist in these historic records. The scientific value of a continuous record of fast-ice thickness as a climatic indicator has been recognised and as a consequence the fast-ice and snow measurements at Davis and Mawson have been accepted into the State of the Environment (SOE) reporting scheme by the Australian Antarctic Division. Data from ANARE fast-ice measurements have been included in scientific research (e.g., Mellor [1960], Allison [1981], Heil et al. [1996], or Heil and Allison [2002a]). For example, Heil et al. [1996] designed an inverse 1-dimensional thermodynamic sea-ice model and used historic fast-ice data from Mawson together with meteorological observations to derive the seasonal and interannual variability of the oceanic heat flux at the underside of the fast ice. They showed that the interannual variability identified from the fast-ice data was in agreement with changes in the water-mass properties observed upstream of the fast-ice site. Using the historic data together with data from ongoing measurements this project aims to quantify the local-scale interactions between atmosphere and fast ice, to derive the relative impact of oceanic forcing on the fast-ice evolution, to estimate the small-scale spatial variability of the fast-ice growth, and to explore the connection between fast-ice changes and climate change. In particular we aim: - to extend previous analysis from records of fast-ice observations for Mawson and Davis stations; - to exactly determine the growth-melt cycle of East Antarctic fast ice and its modifications due to changing environmental conditions; - to derive the statistical variability of the fast-ice evolution relative to atmospheric and oceanic forcing; - to evaluate the suitability of fast ice as indicator of changes in the Antarctic environment; - to determine the spatial coherence of fast-ice properties. Contribution of this research to achieving the relevant milestones contained in the Strategic Plan: - Contributions to Key Scientific Output 3: This research aims to derive an assessment of the links between fast-ice variability and Southern Hemisphere environmental conditions from in-situ observations. The annual maximum ice thickness, and the date at which this maximum thickness is reached, reflect the integrated conditions of the local atmospheric and oceanic parameters [Heil, in prep.]. The fast-ice measurements together with concurrent meteorological (and oceanic) observations will allow us to study the direct links of variability in the sea-ice thermodynamics to changes in the Southern Hemisphere atmospheric conditions ("weather" in KSO 3.1). This knowledge will aid our understanding of the interannual and long-term variability of the drifting sea ice, as it will allow us to separate thermodynamic effects from dynamic effects [Heil et al., 1998]. Research outcomes from this study will aid the parameterisation of thermodynamic sea-ice processes in coupled climate models, and will provide an outlook towards statistical parameterisation of fast-ice characteristics within numerical models. - Contributions to Key Scientific Output 4: Using historic data and ongoing measurements this project seeks to build an accurate and ongoing record of measurements of fast-ice and snow properties for the monitoring and detection of change in Antarctic and Southern Ocean climate. Changes identified in the fast-ice thickness or in the occurrence of the annual maximum ice thickness are due to changes in either oceanic or atmospheric heat and/or moisture transfer. Using fast-ice measurements from locations around the Antarctic continent in combination with large-scale atmospheric (and oceanic) data the external impact on the sea ice can be extrapolated. Historic climatologies of interannual variability will be updated and extended. These climatologies will be available to expedition operations, scientific research, etc. Assessment basis: * Completion of field work/primary scientific activity: The requirements of data collection for this project are in line with indicator No. 43 "Fast ice thickness at Davis and Mawson" of the State of the Environment (SOE) reporting scheme. Weekly measurements of fast-ice and snow thicknesses are required for the SOE scheme as well as for this project. Additional data on the freeboard of the ice are easily and quickly obtained during the standard measurements [Heil and Allison, 2002b]. It is worthwhile to emphasise the requirement of a long-term commitment for the field measurements in order to obtain meaningful and statistically significant records of fast-ice observations. * Completion of analysis: The evaluation of individual growth-decay seasons will be undertaken once all fast-ice data as well as all required auxiliary data (mainly meteorological measurements) are available to the CI. Where available, opportunistic oceanographic data will be acquired as part of related research projects. Analysis to assess the interaction between fast ice, atmosphere and ocean will be carried out for each growth-decay season. This will include numerical modelling of the thermodynamic processes in fast-ice growth and decay. For years, when measurements of all external forcing fields (oceanic and atmospheric) have been collected, the parameterisations of the thermodynamic model can be evaluated by comparing the model results with the observed fast-ice thickness and growth rates. Following Heil et al. [1996] the thermodynamic model can be reconfigured for use in the inverse mode, using atmospheric and fast-ice data to calculate the oceanic heat flux at the underside of the ice. Long-term records of changes in the oceanic heat flux are not available and this inverse method (driven with data derived from meteorological and fast-ice measurements) will be able to contribute to our understanding of coastal oceanography by using several measuring sites within a small area. Analysis of the interannual variability of the fast ice and its response to changing environmental conditions will be carried out on the long-term data record. The data will be analysed for long-term signals, and will be evaluated for their statistical significance. * Publication of results: Scientific findings will be written up and submitted for publication as they arise. Publications in high-impact international journals are expected about every 2 years.

  • During the winter and spring of 2002, underwater calling rates were measured near mid-day on an opportunistic basis at 7 breeding sites and, at two breeding sites, over 24 hour periods once a month. The data were analysed with respect to reproductive season (early ice formation, prebreeding, pupping and mating) and if the recordings were made when it was dark or twilight/light. Taken from the abstract of the paper referenced below: Underwater vocalisation monitoring and surveys, both on ice and underwater, were used to determine if Weddell seals (Leptonychotes weddellii) near Mawson Station, Antarctica, remain under the fast ice during winter within close range of breeding sites. Daytime and nighttime underwater calling rates were examined at seven breeding sites during austral winter and spring to identify seasonal and diel patterns. Seals rarely hauled out at any of the sites during winter, although all cohorts (adult males, females, and juveniles) were observed underwater and surfacing at breathing holes throughout winter (June-September) and spring (October-December). Seal vocalisations were recorded during each sampling session throughout the study (n=102 daytime at seven sites collectively, and n=5 24-h samples at each of two sites). Mean daytime calling rate was low in mid-winter (July) (mean = 18.9 plus or minus 7.1 calls per minute) but increased monthly, reaching a peak during the breeding season (November) (mean = 62.6 plus or minus 15.7 calls per minute). Mean nighttime calling rate was high throughout the winter and early spring (July-October) with mean nocturnal calling rate in July (mean = 61.8 plus or minus 35.1 calls per minute) nearly equal to mean daytime calling rate in November (during 24-h daylight). Reduced vocal behaviour during winter daylight periods may result from animals utilising the limited daylight hours for nonvocal activities, possibly feeding. The following study sites were among those used in this project (provided by Phil Rouget): - Forbes site (identified as Site 6 in the paper) is located at Forbes Glacier (approx. 0.5 km to the west of the glacier tongue and approximately 200 meters offshore of the mainland). (67 degrees 35.256 minutes S, 62 degrees 16.756 minutes E) - Kista site is located in the middle of Kista Strait (site 7 in the Marine Mammal Science paper). (67 degrees, minutes 33.840 S, 62 degrees 47.402, minutes E) - SPA site was our site located just west of the western boundary of the SPA which itself is located west of Mawson and east of Forbes Glacier. (Site 2 in Marine Mammal Science paper). (67 degrees 35.179 S, 62 degrees 25.425 minutes E) - McDonald Islands (or Rocks) was the site located North/NorthWest of Kista Strait, as it is named so on the Framens Mtn. Nautical Chart. From memory, it was approximately 12 km north/north west of Mawson Station. (This was site 5 in the Marine Mammal Science paper). (67 degrees 29.414 minutes S, 62 degrees 41.011 minutes E) - Stewart Rocks (also named Sewart Rocks on an alternative map) is located due north of Mawson Station, also by about 12 km. (East of McDonald site, and North East of Kista). This was site 4 in the Marine Mammal Science paper. (67 degrees 29.933 minutes S, 62 degrees 51.765 minutes E) - Anderson Rocks is an extensive group of rocky islets west of Auster Island (approximately 6-7 km offshore). This was site 3 in the Marine Mammal Science paper. (67 degrees 26.445 minutes S, 63 degrees 25.414 minutes E) - SEAL MO was located just north of Macey Hut by about 2 km. This was site 1 in the Marine Mammal Science paper. (67 degrees 23.399 minutes S, 63 degrees 47.977 minutes E) - Aside from SEAL MO and SPA, the names from all these sites are indicated in the Framnes Mountain Chart. An image showing the locations of the fields sites is also part of the download file. The fields in this dataset are: Site Period Day Calling rate photoperiod Sun time